

Fermilab Test Beam Facility

Evan Niner 52nd Annual Fermilab Users Meeting 12 June 2019

What is the Test Beam Facility?

- Operating since 2005, served over 1000 users from 30 countries
- Broad program spanning collider, muon, neutrino, and general R&D
 - Flexible infrastructure to fit user needs
- Two beamlines with energies from 120 GeV primary protons down to ~200 MeV in the tertiary line
- Projects as small as one person. Rapid experiment changeover. Many repeat customers
- During the CERN LS2 shutdown FTBF is the only high energy test beam facility in the world

Who?

- 264 users from 20 experiments in FY18 plus the EDIT school
- ~18 groups in FY19
- Three new efforts
 - T-1564 (LHCb)
 - T-1575 (Zero Degree Calorimeter)
 - NOvA test beam program
- Two theses in 2018-2019
 - Elena Gramellini, Yale: <u>Measurement of the</u>
 <u>Negative Pion and Positive Kaon Total Hadronic Cross</u>
 <u>Sections on Argon at the LAr</u>
 - William Foreman, U. Chicago: <u>A Demonstration</u> of Light-Augmented Calorimetry For Low-Energy Electrons in Liquid Argon

FY18 USERS BY JOB TYPE

FY18 USER GROUP BY RESEARCH FOCUS

Where?

Meson Detector Building - West

FTBF Layout

MTest Beamline

MCenter Beamline

Beam Details

 4 second beam spill every 60 seconds, available 24/7

Tunable rate from 100 to 100,000
 Hz

- MTest
 - 120 GeV primary protons
 - 1-66 GeV secondary beam
 - ~2cm spot size
- MCenter
 - Two tertiary beamlines down to 200 MeV
 - One area with cryogenic support, previously used by LArIAT
 - New tertiary beam being commissioned now for NOvA

Thanks to AD operators for securing enclosures and working with each group to deliver beam!

Coordination and support from Ext. Beams dept: T. Kobilarcik, J. St. John, A. Watts, G. Koizumi, P. Allcorn

https://ftbf.fnal.gov/beam-overview/

Beam Performance - MTest

Positive Beams Composition, Open Collimators 2016

Table with energies, beam spread, percentages: http://ftbf.fnal.gov/mtest-beam-details-2/

Negative Beams Composition, Open Collimators 2016

Studies by E. Skup and D. Jensen

Facility Infrastructure

- ACNET controlled motion tables
- Laser alignment
- Helium tubes
- Web based cameras
- Crane coverage (30 ton)
- climate controlled huts
- Gas patch panels
- Signal, network, HV panels
- Two control rooms
- Counting house
- Machine shop
- Technical staff to help turn any plan into reality

Facility Instrumentation

- Cherenkov detectors
- Multi Wire Proportional Chambers
- Lead glass calorimeter
- Assorted scintillator paddles
- Silicon strip and pixel telescope

https://ftbf.fnal.gov/
instrumentation-overview/

Off-The-Shelf Data Acquisition (OTSDAQ)

- SCD developed, flexible and scalable system allowing integration with other devices
- Tied into facility MWPCs, Cherenkov detectors, silicon strip telescope.
- · Working to integrate with facility, enhance user experience, document
- Several groups (CMS outer tracking, CMS Timing, RD53 chip) have integrated and taken fully synchronized data with the telescope

L. Uplegger, R. Rivera, E. Flumerfelt

http://otsdag.fnal.gov/

LHC Groups

- CMS (T992, T1409, T1516), ATLAS (T1068, T1224), LHCb (T1564)
- High Luminosity LHC upgrade R&D
- Variety of sensor and readout chip (RD53a) testing.
 - Both before and after irradiation
- Radiation hard timing detectors with 30-40 picosecond resolution
- Telescope development and testing

Other Collider Efforts

- Electron Ion Collidor (EIC) and sPHENIX detector R&D
- T1429, T1439, T1441, T1450, T1473, T1564
- Calorimeters, trackers, vertex detectors, TPCs, GEM and Micromegas
- Ongoing program testing options.
 Component integration and DAQ testing

Neutrinos

LArIAT

- Tertiary beam in MC7a
- Liquid argon detector, installed cryogenics
- technology R&D (light collection, cold electronics, pixel readout, etc)
- Measure hadronic cross sections in liquid argon

EMPHATIC

Measure hadron production to constrain flux for neutrino experiments

MINERvA

- Measure detector energy response to hadrons
- DAQ testing

Neutrinos

- New tertiary beam installed in MC7B
- NOvA test beam installing and commissioning
- Data collection in FY20

Photo courtesy A. Sousa

Muons

- g-2 straw tracker
 - tested full readout electronics chain
 - tested various gas mixtures
 - performing great in experiment
- Mu2e cosmic ray veto
 - Measured photoelectron yield in scintillator counters
- Mu2e straw tracker
 - came briefly, determined HV issues

General R&D

 Many groups come for general purpose R&D

- Characterizing properties of Largearea Picosecond Photo Detectors (LAPPDTM) for use in a time-of-flight system
- Experiment built and operated by one U. Chicago graduate student (E. Angelico)

Irradiation Test Area

- Large demand for on-site facility to irradiate sensors
- Hand-in-hand with testing at FTBF
- MTA area being cleared out before construction
- Goal to be available early 2020

Irradiation Test Area

Before After

Photos courtesy J. St. John

It takes a village

Summary

- FTBF is a world class facility for detector R&D
- Continually improving facility resources and the user experience
- Great training bed for students
- Scheduling FY20 beam time soon. If you have a project in mind we are dedicated to making it happen!
- Learn more
 - FTBF elog
 - Slack Team: fnal-testbeam
 - Webpage: ftbf.fnal.gov
 - Listserv: test_beam@fnal.gov

